Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Int. arch. otorhinolaryngol. (Impr.) ; 26(1): 119-124, Jan.-Mar. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364911

ABSTRACT

Abstract Introduction Aminoglycoside, as an antimicrobial medication, also has side-effects on the inner ears, bringing about hearing disorders. Curcumin has been proven to be a strong scavenger against various reactive oxygen species (ROS), and the increase in ROS production is considered to play an important role in the process of hearing disorder. Objective To prove that curcumin is an effective antioxidant to prevent cochlear damage based on malondialdehyde (MDA) expression. Methods The present research used 32 Rattus norvegicus, of the Wistar lineage, randomly divided into 8 groups: negative control, ototoxic control (a single dose of 40 mg/ml of gentamicin via intratympanic injection), 2 groups submitted to ototoxic control + curcumin treatment (100 mg/kg, 200 mg/kg), 2 groups who iunderwent ototoxic control + curcumin treatment for 7 days, and two groups submitted to curcumin treatment as prevention for 3 days + ototoxic induction. Results The results showed that the lowest dosage of curcumin (100 mg/kg) could decrease MDA expression on the cochlear fibroblastic wall of the ototoxic model; however using greater doses of curcumin (200 mg/kg) for 7 days would provide a better effect. Curcumin could also significantly decrease MDA expression when it was administered during the preototoxic exposure. Conclusion Curcumin can be used as a therapy for ototoxic prevention based on the decrease in MDA expression.

2.
Int. arch. otorhinolaryngol. (Impr.) ; 20(4): 370-376, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828899

ABSTRACT

Abstract Introduction The structural changes underlying permanent noise-induced hearing loss (NIHL) include loss of the sensory hair cells, damage to their stereocilia, and supporting tissues within the cochlear lateral wall. Objective The objective of this study is to demonstrate curcumin as a safe and effective therapeutic agent in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall through cell death pathway. Methods We divided 24 Rattus norvegicus into 4 groups, Group 1: control; Group 2: noise (þ); Group 3: noise (þ), 50 mg/day curcumin (þ); Group 4: noise (þ), 100 mg/day curcumin (þ). We provided the noise exposure dose at 100 dB SPL for two hours over two weeks and administered the curcumin orally over two weeks. We examined all samples for the expressions of calcineurin, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and apoptotic index of cochlear fibroblasts. Results We found significant differences for the expressions of calcineurin (p< 0.05) in all groups, significant differences for the expressions of NFATc1 (p< 0.05) in all groups, except in Groups 1 and 4, and significant differences for the apoptotic index (p< 0.05) in all groups. Conclusion Curcumin proved to be potentially effective in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall regarding the decreased expression of calcineurin, NFATc1, and apoptotic index of cochlear fibroblasts.

SELECTION OF CITATIONS
SEARCH DETAIL